MSPDebug(0.22)+ Launchpad.
" [msp/mspdebug/debug, February 18, 2015

Run Launchpad with MSPDebug

Tommaso Toffoli (tt@bu.edu)

Electrical and Computer Engineering, Boston University, MA 02215

MSPDebug (here, DEBUG for short) is a command-line tool,
designed and mantained by Daniel Beer, for programming
and debugging the MSP430 family of microcontroller units
(Mcus). It supports a number of MSP430 development tools
as well as a simulation mode. DEBUG can also be used as
a remote stub (a software interface adapter) for GbB—the
multiplatform GNU debugger.

DEBUG belongs to a rich cultural environment and is well
supported. It works on Linux, Mac OS/X, and Windows.
For downloading and documentation, see mspdebug.sourceforge.
net. Installation and configuration details may be found in
mspdebug. sourceforge .net/faq.html.

When started with appropriate options, DEBUG attempts
to connect to the target development hardware (such as
a TI LaunchPad) and identify the device under test (the
MCU to be programmed and debugged); once connected, it
iteratively prompts for commands. There are commands for
reflashing the device, inspecting and modifying memory and
registers, and controlling the CPU (single step, run, stop,
run to breakpoint, and reset and halt).

Besides dealing directly with machine language, DEBUG
has substantial high-level smarts. It can disassemble ma-
chine code present in a given area of memory. When pro-
vided with a symbol table (an assignment of meaningful
names to specific memory address and data values), it can
make use of these names as convenient mnemonic han-
dles for the values themselves, as well as deal with (under-
stand or generate) memory addresses and values expressed
in terms of such names. As mentioned, it can even run and
debug a program on a simulation of an MsP430 MCU.

This user guide is a reasoned and annotated expansion
of DEBUG’s man page. Our chief target audience is the TI
LaunchPad user. To avoid clutter, we only include discus-
sion of command-line options and device options that con-
cern the LaunchPad, omitting information about oulandish
(and mostly obsolete) MspP430 development hardware; for
those, please refer to DEBUG’s official man page.

1 A bird’s eye view

The operation of DEBUG consists in processing a sequence
of commands specific to it—which are listed and discussed
in the next section (§2). Command-line options and other
device drivers are discussed in §4 and §5.

Interactive mode. For the LaunchPad, DEBUG is typi-
cally called from the command line as follows
mspdebug rf2500
where r£2500 is the device driver to be used for the Launch-
Pad! When launched in this way, DEBUG enters an interac-

ISome recent versions of the LaunchPad—such as the MSP430
FR4133 LaunchPad Development Kit—use a different driver. This
driver is available as a stopgap patch for the current version of DE-
BUG, but should appear as a standard feature in future releases.

tive loop: it repeatedly prompts the user for a command,
which it then executes.

Batch mode.
the form
mspdebug rf2500 commands
The commands that appear as arguments at the end of
this line are all executed by DEBUG as a batch right after
connecting to the LaunchPad, and then the progam exits—
the interactive prompt never appears.

A variant of the above command line has

One of DEBUG’S commands is read, which reads and exe-
cutes commands, in a line-by-line fashion, from a given file;
in this way, a commonly used sequence of DEBUG command
can be “canned” and then issued with a single command.

On startup, DEBUG will look for a file called .mspdebug in
the user’s home directory. If this file exists, DEBUG performs
a read on it before starting the interactive loop; in this
way, the command loop can be run within a customized
enviroment.

DEBUG’s commands—which are its raison d’étre—will
be listed and described first, in §2. Insofar as they are
of concern to the LaunchPad, options inserted between
the mspdebug command proper and the driver argument
rf2500 in the above command-line examples, as well as
driver arguments other than r£2500, mostly deal with set-
and-forget parameters of a technical nature, and will dis-
cussed in later sections (§4 and §5).

2 Commands

DEBUG commands take arguments separated by spaces (an
argument itself containing spaces must be enclosed in dou-
ble quotation marks; within a quoted string, the usual C-
style backslash substitutions can be used). A numerical ar-
gument may be given in the form of an address expression,
as detailed in §2.2.

Any command can be specified by giving just enough of
the first few characters to make the specification unambigu-
ous. Some commands support automatic repeat; for these,
ENTER at the prompt will cause repeat execution.

Some aspects of DEBUG’s behaviour can be configured by
setting global options, with the command opt.

Once a piece of machine code is loaded into a micro-
computer’s memory, many of DEBUG’s commands can make
good use of a symbol table which provides mnemonic han-
dles for numerical addresses and values which appear in
that code. These symbolic names may be introduced dur-
ing compilation/assembly by explicit define, set, equ, =
and similar directives, or simply in the form of instruction
labels. This human-readable information is of no use to the
computer and may ultimately be discarded, but is invalu-
able for debugging and may be retained in some form for
this purpose by some of the binary output files produced
by the compilation/assembly, such as .elf and .hex files.

To be useable by DEBUG, this mnemonic information has
to be made available in the form of a symbol table (§2.1),
which DEBUG may at a later time augment or edit as de-
sired, with the sym command and its subcommands.

List of commands

= expression| FEvaluate an address expression and show

both its value and the result when that value is reverse
looked up in the current symbol table. This result is of
the form symbol+offset, where symbol is the name of the
nearest symbol not past the address in question. See §2.2
for more information on the syntax of expressions.

lalias [name [command]]| The alias command allows one
to use shortcuts for commonly used long commands. By it-
self, alias show a list of defined command aliases. Followed
by just a name, it removes a previously defined command
alias having that name.

With both the name and command arguments, it defines
(or redefines) a command alias. The command text will
be substituted for name when looking up commands. If the
command in this text is followed by arguments, then the en-
tire text must be wrapped in quotes when defining the alias.
To avoid alias substitution when interpreting commands,
prefix the command with “\” (a backslash character).

Show a list of active breakpoints. Breakpoints can
be added and removed with the setbreak and delbreak
commands. Breakpoints are numbered starting from 0.
Their maximum number depends on the target chip (and is
reported by DEBUG at start-up).

| cgraph address length [address]| Construct the call graph
of all functions contained or referenced in the given memory
range. If a particular function is specified, then details for
that node of the graph are displayed; otherwise, a summary
of all nodes is displayed.

Information from the symbol table is used for hinting at
the possible locations of function starts. Any symbol which
does not contain a ‘.’ is considered a possible function start.
Caller and callee names are shown prefixed by a ‘*> when

their connection is a tail call (see en.vikepedia.org/viki/Tail_call).
|delbreak [index]| Delete breakpoints. If an index is given,

the selected breakpoint is deleted; otherwise, all break-
points are cleared.

|dis address [length]| Dissassemble a section of memory.
Both arguments may be address expressions. If no length
is specified, a default length of 64 bytes is disassembled and
shown. If symbols are available, then all addresses used as
operands are translated into symbol+offset form.

This command supports repeat execution. If repeated, it
continues to disassemble another block of memory following
that last printed.

|erase [all|segment] [address]| Erase the device under
test. With no arguments, all code memory is erased (but
not information or boot memory). With the argument all,
a mass erase is performed (the results may depend on the
state of the LOCKA bit in the flash memory controller). To
erase an individual flash segment,? specify segment and give
the segment’s starting address.

2Segments are the erase-unit size for flash memory when one wants

Exit from DEBUG.
gdb [port]| Start a GDB remote stub, optionally specifying

a TCP port to listen on. If no port is given, the default port
is 2000. DEBUG will wait for a connection on this port, and
then act as a GDB remote stub until GDB disconnects.

GDB’s monitor command can be used to issue DEBUG
commands via the GDB interface. Supplied commands are
executed noninteractively, and the output is sent back to
be displayed by GDB.

'help [command]| Show a brief listing of available com-
mands. If an argument is specified, show the syntax for the
given command. The help text shown when no argument is
given is also shown by DEBUG at start-up.

\hexout address length filename \ Read the specified mem-
ory range of the device and save it to an Intel HEX file. The
address and length arguments may both be address expres-
sions. If the specified file already exists it will be overwrit-
ten. If you need to dump memory from several disjoint
memory regions you can do this by saving each section to a
separate file. The resulting files can then be concatenated
to form a single valid HEX file.

|isearch address length [options ...]| Search over the
given memory range (from address for length) for an in-
struction which matches the specified search criteria. The
search may be narrowed by specifying one or more match
options, detailed in §2.3.

load filename| Program the device under test using the

binary file supplied. This command is like prog, but it does
not load symbols or erase the device before programming.
The CPU is reset and halted before and after programming.

[locka [set|clear]| Show or change the status of the
LOCKA bit in the chip’s memory controller. The LOCKA bit
is set on power-on reset (POR) and acts as a write-protect
bit for info segment A, containing factory-configured cali-
bration data which under normal circumstances should not
be changed; however, writing to info segment A becomes
possible if the LOCKA bit is cleared. The LOCKA bit affects
in a similar way the behaviour of the erase all command:
if LOCKA is set (this is the default setting), only main mem-
ory is erased; but if LOCKA is cleared, both main and info
memory are erased.

'md address [length]| (“memory display” or “memory
dump”) Read the specified section of device memory and
display it as a canonical-style hex dump. Both arguments
may be address expressions. If no length is specified, a
default-length (64 bytes) section is shown.

The output is split into three columns. The first column
shows the starting address for the line. The second column
lists the hexadecimal values of the bytes. The final column
shows the AscII characters corresponding to printable bytes,
and ‘.’ for non-printing characters.

This command supports repeat execution. If repeated, it
continues to print another block of memory following that
last printed.

to erase individual small chunks of memory rather than erasing all code
memory or the whole chip including information and boot memory.
Segment sizes vary from chip to chip; a typical size is 128 bytes. Note
that segment size for information memory may be different from that
of main memory.

\mw address bytes ... \ (“memory write”) Write a sequence
of bytes at the given memory address. The address given
may be an address expression. Byte values are two-digit
hexadecimal numbers separated by spaces.

lopt [name [value]]| Query, set, or list DEBUG’s global op-
tions. With no arguments, this command displays all avail-
able options. With just an option name as its argument, it
displays the current value of that option. The option names
and their possible values are as follows:

color [boolean| If true, DEBUG will colorize debugging
output.

gdb_loop [boolean] Automatically restart the GDB server
after disconnection. If this option is set, then the GDB
server keeps running until an error occurs or the user
interrupts with Ctrl+C.

iradix [numeric] Default input radix (an integer greater
than 1) for address expressions. For address values
with no radix specifier, this value gives the input radix,
which is 10 (decimal) as initial default. (For iradix
values larger than sixteen, letters following f are used
in alphabetic order as additional digits past the ordi-
nary sixteen hexadecimal digits.)

quiet [boolean] If set, DEBUG will suppress most of its
debug-related output. This option defaults to ‘false’,
but can be set to ‘true’ on startup by the command-line
option -q.

prog filename| Erase and reprogram the device under test

using the binary file supplied. Supported file types are HEX,
TI-Text, SREC, ELF, S-19, and COFF; the file format will
be auto-detected. In the case of a file containing symbols,
symbols will be automatically loaded from the file into the
symbol table, discarding any pre-existing ones. The CPU is
reset and halted before and after programming.

Often prog is run as the only task of a DEBUG batch run,
as with the line mspdebug prog "proj.hex", which simply burns
the machine-code memory image proj.hex of a developed
project onto the MCU’s FLASH ROM.

Read commands line-by-line from the given

file and process them in that order. (Any line whose first
non-space character is # is ignored.) If an error occurs while
processing a command, the rest of the file is not processed.

Show the current value of all CPU registers in the
device under test.

Reset (and halt) the cPU of the device under test.

Start running the cpU. The interactive command
loop is blocked when the CPU is started and the prompt will
not appear again until the CPU halts. The cpu will halt if it
encounters a breakpoint or if Ctrl-C is pressed by the user.
After the cPU halts, the current register values are shown
together with a disassembly of the first few instructions at
the address specified by the program counter.

|set register value| Alter the value of a register. A register
is specified as numbers from 0 through 15. Any leading
non-numeric characters are ignored (so a register may be
specified as, for example, R12). The value argument is an
address expression.

|setbreak address [index]| Add a new breakpoint. The
breakpoint location is an address expression. An optional
index may be specified, indicating that this new breakpoint
should overwrite an existing slot. If no index is specified,
then the breakpoint will be stored in the next unused slot.

|simio subcommand [parameters]| Through various sub-
commands, add, remove, or give info about peripherals im-
plemented by the simulator. The simulator and its subcom-
mands are described in §3.

step [count|| Step the CPU through one or more instruc-

tions. After stepping, the new register values are displayed
together with a disassembly of the instruction at the address
specified by the program counter.

An optional count can be given, to make DEBUG step
that many times. If no argument is given, the CPU steps
just once. This command supports repeat execution.

Perform on the symbol table one of the

following operations:

clear Clear the symbol table, deleting all symbols.
set name value Set or alter the value of a symbol. The
value given may be an address expression.

del name Delete the given symbol from the symbol ta-
ble.

import filename Load symbols from the specified file into
the symbol table. The file format will be auto-detected.
DEBUG supports a number of commonly used symbol-
table styles, among which ELF32, Intel HEX, and BSD
(such as the output produced by m(1)).

import+ filename This command is similar to sym
import, except that the symbol table is not cleared
first. In this way, symbols from multiple sources can
be combined.

export filename Save to the given file all symbols cur-
rently defined. The symbols are saved as a BSD-style
symbol table. Note that symbol types are not stored
by DEBUG; all symbols are saved as type ‘t’ (denoting
“text,” as opposed to “data”).

find [regex| Search for symbols. If a regular expression
is given, then all symbols matching the expression are
printed. If no expression is specified, then the entire
symbol table is listed.

rename regex string Rename symbols by searching for
those matching the given regular expression and substi-
tuting the given string for the matched portion. The
renamed symbols are displayed and their number re-
ported.

2.1 Symbol table

To preserve in the final ELF file (the one containing the
machine code image ready to be loaded into the micropro-
cessor’s ROM, PROM, or FLASH memory) the symbolic names
and associated values encountered in a compilation, the lat-
ter must be run with an appropriate option (e.g., -g in the
GCC toolchain). To extract from a file base.elf the symbol
table in BSD format, use the Linux command

mm -a base.elf > base.bsd

(typically issued by Makefile). To import this table into
DEBUG, use the command syn import base.bsd .

2.2 Address expressions

An address expression consists of an algebraic combination

of values. An address value may be either a symbol name,

a hex value preceeded by the specifier 0x, a decimal value

preceeded by the specifier 04, or a number in the default

input radix, without a specifier (for more information on

input radix, see the global option iradix in command opt).
The operators recognized are the usual algebraic opera-

tors +-#*/\} (). Operator precedence is the same as in

C-like languages, and the - operator may be used as a unary

negation operator. The following are valid examples of ad-

dress expressions

2+2

table_start + (elem_size + elem pad)*4

main+(0x3f

__bss_end-__bss_start

2.3 Match options

Here is a list of match options that can be use to qualify
the scope of the isearch command.

opcode Match the specified opcode. Byte/word speci-
fiers are not recognised, as they are specified with other
options.

byte Match only byte operations.

word Match only word operations.

aword Match only address-word (20-bit) operations,
available in the MSP430X (“eXtended”)architecture.

jump Match only jump instructions (conditional and un-
conditional jumps, but not instructions such as BR
which load the program counter explicitly).

single Match only single-operand instructions.

double Match only double-operand instructions.

noarg Match only instructions with no arguments.

src address Match instructions with the specified value
in the source operand; this value may be given as an ad-
dress expression. Specifying this option implies match-
ing of only double-operand instructions.

dst address Match instructions with the specified value
in the destination operand. This option implies that
no-argument instructions are not matched.

srcreg register Match instructions using the specified
register in the source operand. This option implies
matching of only double-operand instructions.

dstreg register Match instructions using the specified
register in the destination operand. This option implies
that no-argument instructions are not matched.

srcmode mode Match instructions using the specified
mode in the source operand. See below for a list of
modes recognised. This option implies matching of
only double-operand instructions.

dstmode mode Match instructions using the specified
mode in the destination operand. See below for a

list of recognized modes. This option implies that no-
argument instructions are not matched. For single-
operand instructions, the operand is considered to be
the destination operand.

For the sake of expressing instruction mode in the above
match options, the seven addressing modes used by the
MsP430 are represented by single characters as follows:

R Register mode

I Indexed mode

$ Symbolic mode

¢ Absolute mode

@ Register-indirect mode

+ Register-indirect mode with auto-increment

t Immediate mode

3 The MsP430 simulator

DEBUG provides, as a virtual MSp430 device, a simulation
mode intended for testing changes to DEBUG and for aiding
in the disassembly of MSp430 binaries (as all binary and
symbol-table formats are still usable in this mode).

A 64k buffer is allocated to simulate the device mem-
ory. (While the instructions of the MSP430X architecture
are recognized by the the disassembler, this architecture
is not currently simulated by DEBUG.) During simulation,
addresses below 0200 are assumed to be 1/0 memory. Pro-
grammed /O writes to and from 1/0 memory are handled by
the 1/0 simulator, described below, which can be configured
and controlled with the simio command.

For 1/0 memory locations not covered by simio com-
mands, the default behavior is as follows. When data is
written to an 1/0 memory address, a message is displayed
on the console showing the program counter location, ad-
dress written to, and data. The data value is also written
to simulated RAM at the relevant address. When data is
read from 1/0 memory, the user is notified similarly and
prompted to supply the data. At this prompt, address ex-
pressions can be entered. If no value is entered, the value
is read from simulated RAM. The user can press Ctrl+C to
abort an 1/0 request and stop execution.

The subcommands of the simio command are

add class name [args ...| Add a new peripheral to
the 1/0 simulator. The class parameter may be any
of the peripheral types named in the output of the
simio classes command. The name parameter is a
unique name assigned by the user to this peripheral
instance, and is used with other commands to refer to
this instance of the peripheral.
Some peripheral classes take arguments upon creation.
These are documented in the output to the simio help
command.

classes List the names of the different types of periph-
erals which may be added to the simulator. You can
use the simio help command to obtain more informa-
tion about each peripheral type.

config name parameter [args ...] Configure or perform
some action on a peripheral instance. The param argu-
ment is specific to the peripheral type. A list of valid

4

configuration commands can be obtained by using the
simio help command.

del name Remove a previously added peripheral in-
stance. The name argument should be the name of a
peripheral that was assigned with the simio add com-
mand.

devices List all peripheral instances currently attached
to the simulator, along with their types and interrupt
status. You can obtain more detailed information for
each instance with the simio info command.

help class Obtain more information about a peripheral
class. The documentation given will list constructor
arguments and configuration parameters for the device
type.

info name Display detailed status information for a par-
ticular peripheral. The type of information displayed
is specific to each type of peripheral.

3.1 Simulator’s I0 subsystem

The simulator’s IO subsystem consists of a database of de-
vice classes, and a list of instances of those classes. Each
device class has a different set of constructor arguments,
configuration parameters and information which may be
displayed. This section describes the operation of the avail-
able device classes in detail.

In the list below, each device class is listed, followed by
its constructor arguments.

Digital 10 port simulator. This device simulates any
of the digital ports with or without interrupt capability. It
has the following configuration parameters:

base address Set the base address for this port. Note
that for ports without interrupt capability, the resistor
enable port has a special address which is computable
from the base address.

irq vector Enable interrupt functionality for this port
by specifying an interrupt vector number.

noirq Disable interrupt functionality for this port.

verbose Print a state change message every time the
port output changes.

quiet Don’t print anything when the port state changes
(the default).

set pin value Set the input pin state for the given pin
on this port. The pin parameter should be an index
between 0 and 7. The value should be either zero (for
a low state) or non-zero (for a high state).

This peripheral simulates the hardware multiplier.
It has no constructor or configuration parameters, and does
not provide any extended information.

This peripheral simulates Timer_A modules,

and can be used to simulate Timer_B modules provided
that the extended features aren’t required. The construc-
tor takes a size argument specifying the number of cap-
ture/compare registers in this peripheral instance. The

number of such registers may not be less than 2, or greater
than 7. The 1/0 addresses and IRQs used are config-
urable. The default 1/0 addresses used are those specified
for Timer_A in the MsP430 hardware documentation.

base address Alter the base 1/0 address. By default, this
is 0x0160 . By setting this to 0x0180, a Timer_B module
may be simu- lated.

irq0 number Set the TACCR O interrupt vector number. By
default, this is interrupt vector 9. This interrupt is
self-clearing, and higher priority than the TACCR 1/ TATF6
vector.

irql number Set the TACCR 1/TATFG interrupt vector. By
default, this is interrupt vector 8.

iv address Alter the address of the interrupt vector regis-
ter. By default, this is 0x012e. By setting this to 0x01le,
a Timer_B module may be simulated.

set channel value When Timer_A is used in capture
mode, the (CI bit in each capture register reflects the
state of the corresponding input pin, and can’t be al-
tered in software. This configuration command can be
used to simulate changes in input pin state, and will
trigger the corresponding interrupts if the peripheral is
so configured.

\tracer history—size\ The tracer peripheral is a debugging
device. It can be used to investigate and record the 1/0 ac-
tivity of a running program, to benchmark execution time,
and to simulate interrupts. The information displayed by
the tracer gives a running count of clock cycles from each of
the system clocks, and an instruction count. A list of the n
most recent 1/0 events is also displayed (this is configurable
via the history-size argument of the constructor). Each 1/0
event is timestamped by the number of MICIK cycles that
have elapsed since the last reset of the device’s counter.
The 1/0 events that it records consist of programmed 1/0
reads and writes, interrupt acceptance, and system resets.
As well as keeping the 1/0 events in a rotating buffer, the
tracer can be configured to display the events as they occur.
Note that since clock cycles don’t advance while the cpPU
isn’t running, this peripheral can be used to calculate ex-
ecution times for blocks of code. This can be achieved by
setting a breakpoint at the end of the code block, setting
the program counter to the start of the code block, clearing
the tracer and running the code. After the breakpoint is
reached, the information displayed by the tracer will con-
tain a count of MICLK cycles elapsed during the last run.
The configuration parameters for this device class are:

verbose Start displaying 1/0 events as they occur, as well
as recording them in the rotating buffer.

quiet Stop displaying 1/0 events as they occur, and just
record them in the buffer.

trigger irq Signal an interrupt request to the cpU. This
request will remain raised until accepted by the CPU or
cleared by the user.

untrigger Clear a signalled interrupt request.

clear Reset the clock cycle and instruction counts to 0,
and clear the 1/0 event history.

wdt| This peripheral simulates the Watchdog Timer+,
which can be used in software either as a watchdog or as an
interval timer. It has no constructor arguments. The simu-
lated state of the nmi/rst# pin can be controlled through a
configuration parameter. Note that if this pin state is held
low with the pin mode selected as a reset (the default), the
CcPU will not run.

The extended information for this peripheral shows all
register states, including the hidden counter register. Con-
figuration parameters are:

nmi state Set the nmi/rst# pin state. The argument
should be zero to indicate a low state or non-zero for a
high state.

irq irq Select the interrupt vector for interval timer
mode. The default is to use interrupt vector 10.

Appendices

4 Command-line options

Most of these options have to do with configuring DEBUG
for a particular development tool—especially arcane and
legacy ones. Here, we only discuss those options that are
meaningful with the LaunchPad.

Start in quiet mode (see global variable quiet in com-
mand opt).

Specify a particular USB device to connect

to (by default, the first UsB device of the appropriate type
is opened). This option may become necessary if one has
to choose among more LaunchPads plugged into the same
host, or if during a computer session accidents cause a
LaunchPad to be relocated to a different USB port than
the initial one (see end of §6).

Do not process the startup file (“/.nspdebug).

Display a brief help message and exit.
Display a list of MSP430 devices supported

by the driver (zf2500) used for the lauchpad.

[--fet-force-id string| When using a FET device, force
the connected chip to be recognised by DEBUG as one of the
given type during initialization; this overrides the device 1D
returned by the FET. The given string should be a chip
name in long form, for example “MSP430F2274.”

[--fet-skip-close| When using a FET device, skip the
JTAG close procedure when disconnecting. With some
boards, this removes the need to replug the debugger af-
ter use.

List available USB devices and exit.

| -—force-reset| When using an FET device, always send
a reset during initialization. By default, an initialization
without reset will be tried first.

Show version and copyright information.

5 Drivers

The driver used for the LaunchPad must appear in the
command line. For the LaunchPad, in (??) we call for the
r£2500 driver. Another driver of interest is that which uses
as “hardware” a simulator of the MSP430 architecture (§3).
Drivers for other MsP430 development hardware are not dis-
cussed here.

6 USB port

The USB port in which a LaunchPad may be plugged will
be accessible to DEBUG if the latter is run with root per-
missions. However, if DEBUG is run by a normal user, one
would typically get an error like

Trying to open interface 1 on 007

r£2500: can’t claim interface: Operation mot permitted

That is, the user needs to be given permission to use the
USB bus for the desired kind of device. For this purpose,
create in the folder /etc/udev/rules.d/ a Linux udev rule file
that will give to users belonging to a certain group—say,
plug—access to the USB port used by LaunchPad. This file
(which may be named, for instance, 91-msp430.rules (where
we used 91 for a number between 00 and 99 indicating in
which order the file will be taken into consideration within
the folder) shall contain a line like

ATTRS{idVendor}=="0451", ‘ATTRS{idProduct}=="£432" ,MODE="0660" ,GROUP="plug"
where the attributes idVendor and idProduct can be discovered
through the lsusb command, which should print a line like
Bus 003 Device 007: ID 0451:£432 TT Inc. eZ430 Development Tool

one of which shows 04b3 and 301b as respectively vendor and
product of my LaunchPad. Then restart the udev service.
If during all this your USB tool is still plugged in, it has to
be unplugged and plugged in afresh for the new udev rule
to take hold.

Also insure that users are members of plug. After you
add a user to a group, the user will have to log out and then
log in again to enjoy the new membership without having
to wait for a reboot.

Note that a group plug may not exist, or a user may not
be member of it. Also, a user may not have permission to
join that group or to create it if it does not exist. A sensible
policy is for the administrator to choose for GROUP in the
udev rule a group which the users are likely to already be
members of, such as the group users.

Occasionally, the USB slot in which DEBUG automatically
discovered a LaunchPad is for some reason abandoned with-
out closing it (e.g., faulty chip or LaunchPad—perhaps the
LaunchPad misbehaved and DEBUG had to be forcefully
aborted); in this case, on reinsertion of a LaunchPad, the
latter may turn out to have been have been assigned to a
different USB slot while DEBUG may still look for it at the
original USB address. The new bus:device address can be
found by mean of the Linux command 1susb and passed on
to DEBUG through the -U option (e.g., -U 0451:£432).

